Derivation of Chebyshev Differentiation Matrix

伊藤榮信
（Shigenobu Itoh）
February 1， 2019

1 Lagrange interpolation polynomial

Consider the set of $u\left(x_{j}\right)$ for the discrete points $\left\{x_{j}\right\}, \quad j=0, \ldots ., N$ ．The interpolationpolynomial for $u\left(x_{j}\right)$ in the Lagrange form is

$$
\begin{equation*}
p(x)=\sum_{j=0}^{N} \phi_{j}(x) u\left(x_{j}\right) \tag{1}
\end{equation*}
$$

where $\phi_{j}(x)$ is called Lagrange interpolation coefficient and is defined by

$$
\begin{equation*}
\phi_{j}(x)=\prod_{\substack{m=0 \\ j \neq m}}^{N}\left(\frac{x-x_{m}}{x_{j}-x_{m}}\right) . \tag{2}
\end{equation*}
$$

Lagrange interpolation（1）is also defined as follows

$$
\begin{equation*}
\phi_{j}(x)=\frac{S_{N}(x)}{S_{N}^{\prime}\left(x_{j}\right)\left(x-x_{j}\right)}, \tag{3}
\end{equation*}
$$

where $S_{N}(x)$ is defined by

$$
\begin{equation*}
S_{N}(x)=\prod_{j=0}^{N}\left(x-x_{j}\right) \tag{4}
\end{equation*}
$$

2 Chebyshev interpolation

Chebyshev polynomial is defined by

$$
\begin{equation*}
T_{n}(x)=\cos (n \theta), \quad x=\cos \theta . \tag{5}
\end{equation*}
$$

For the $S_{N}(x)$ in the interpolation polynomial（3），we choose the following form

$$
\begin{equation*}
S_{N}(x)=\left(1-x^{2}\right) \frac{\mathrm{d} T_{N}(x)}{\mathrm{d} x} \tag{6}
\end{equation*}
$$

By using the Chebyshev polynomial (5), we can expand $S_{N}(x)$ as follows:

$$
\begin{equation*}
S_{N}(x)=\left(1-x^{2}\right) \frac{\mathrm{d} T_{N}(x)}{\mathrm{d} x}=\sin ^{2} \theta \frac{-N \sin n \theta}{-\sin \theta}=N \sin \theta \sin N \theta, \tag{7}
\end{equation*}
$$

so that $S_{N}(x)$ becomes zero for

$$
N \theta=\pi j, \quad j: \text { integer. }
$$

Therefore we define

$$
\begin{equation*}
\theta_{j}=\frac{\pi j}{N}, \quad j=0,1, \cdots, N, \tag{8}
\end{equation*}
$$

then we get

$$
S_{N}\left(x_{j}\right)=0, \quad x_{j}=\cos \frac{\pi j}{N} .
$$

Here x_{j} are the Gauss-Chebyshev-Lobatto points. Thus, using (6) and Chebyshev polynomial (5), interpolation coefficient (3) is defined by

$$
\begin{equation*}
\phi_{j}(x)=\frac{\left(1-x^{2}\right) \frac{\mathrm{d} T_{N}(x)}{\mathrm{d} x}}{d_{j}\left(x-x_{j}\right)}, \quad j=0,1, \cdots, N, \tag{9}
\end{equation*}
$$

where d_{j} are

$$
\begin{equation*}
d_{j}=S_{N}^{\prime}\left(x_{j}\right)=-c_{j} N^{2} T_{N}\left(x_{j}\right), \quad, \equiv \frac{\mathrm{d}}{\mathrm{~d} x} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{j}=2, \text { for } j=0, N, \quad c_{j}=1 \text { for } 0<j<N . \tag{11}
\end{equation*}
$$

(Proof) Derivative of $S_{N}(x)$ with x is

$$
S_{N}^{\prime}(x)=-N \frac{\cos \theta}{\sin \theta} \sin N \theta-N^{2} \cos N \theta
$$

Here for $j=1, \cdots, N-1, \sin \theta_{j} \neq 0$ and $\sin N \theta_{j}=0$, so that we obtain $S_{N}^{\prime}\left(x_{j}\right)=-N^{2} T_{N}\left(x_{j}\right)$. While $\sin \theta_{j}=0$ and $\sin N \times \theta_{j}=0$ for $j=0, N$. Therefore S_{N}^{\prime} includes $0 / 0$, so that we apply the L'Hopital theorem for the first term of the right hand side

$$
\begin{gathered}
S_{N}^{\prime}\left(x_{j}\right)=S_{N}^{\prime}(\theta=0 \text { or } \pi)=-N \frac{\cos \theta}{\sin \theta} \sin N \theta-N^{2} \cos N \theta \\
\text { L'Hopital }_{=}-N \frac{-\sin \theta \sin N \theta+N \cos \theta \cos N \theta}{\cos \theta}-N^{2} \cos N \theta=-2 N^{2} T_{N}\left(x_{j}\right)
\end{gathered}
$$

3 Derivation of Chebyshev differentiation matrix

Consider Gauss-Chebyshev-Lobatto points (or Chebyshev points, for short) in the $x \in[-1,1]$ defined by

$$
\begin{equation*}
x_{j}=\cos \theta_{j}=\frac{\pi j}{N}, \quad j=0,1, \cdots, N . \tag{12}
\end{equation*}
$$

Given a grid function u defined on the Chebyshev points, we obtain a discrete derivative w in two steps:

- Let p be the unique polynomial of degree $\leq N$ with $p\left(x_{j}\right)=u_{j}, 0 \leq j \leq N$.
- Set $w_{j}=p^{\prime}\left(x_{j}\right)$.

This operation is linear, so it can be represented by multiplication by an $(N+1) \times(N+1)$ matrix, which we shall denote by D_{N} :

$$
\begin{equation*}
w_{i}=\left(D_{N}\right)_{i j} \psi_{j} \tag{13}
\end{equation*}
$$

Here N is an arbitrary positive integer, even or odd. And, $\left(D_{N}\right)_{i j}$ represents the (i, j) elements of the matrix D_{N}.

In order to derive the matrix D_{N}, consider the interpolation polynomial (1) and the interpolation coefficients (9). From the derivative $\mathrm{d} p(x) / \mathrm{d} x=$ $u\left(x_{j}\right) \mathrm{d} \phi_{j}(x) / \mathrm{d} x$ we get

$$
\begin{equation*}
\left(D_{N}\right)_{i j}=\frac{1}{d_{j}}\left[\frac{\mathrm{~d}}{\mathrm{~d} x} \phi_{j}(x)\right]_{x=x_{i}} \tag{14}
\end{equation*}
$$

Considering eqn. (9) we obtain

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} x} \phi_{j}(x)=\frac{1}{\left(x-x_{j}\right)^{2}}\left\{\left[-2 x \frac{\mathrm{~d}}{\mathrm{~d} x} T_{N}(x)+\left(1-x^{2}\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} T_{N}(x)\right]\left(x-x_{j}\right)\right. \\
\left.-\left(1-x^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} x} T_{N}(x)\right\}, \quad j=0,1, \cdots, N \tag{15}
\end{gather*}
$$

(I) Non-diagonal elements: $1<i<N, \quad 1<j<N, \quad i \neq j$
if we put $x=x_{i}$ in eqn.(15), we obtain

$$
\begin{equation*}
\left(D_{N}\right)_{i j}=\frac{1}{d_{j}} \frac{1}{x_{i}-x_{j}}\left(1-x_{i}^{2}\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} T_{N}\left(x_{i}\right) \tag{16}
\end{equation*}
$$

where we used the relation $-2 x_{i} \mathrm{~d} T_{N}\left(x_{i}\right) / \mathrm{d} x=0$ in the bracket []. That is $\theta_{i}=i \pi / N, \quad \sin \theta_{i} \neq 0$

$$
-\left.2 x \frac{\mathrm{~d}}{\mathrm{~d} x} T_{N}(x)\right|_{x=x_{i}}=-2 \cos \theta_{i} \frac{-N \sin i \pi}{-\sin \theta_{i}}=0
$$

Similarly this relation was applied for the second term of the ordinary differential equation of Chebyshev polynomial

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} T_{n}(x)-x \frac{\mathrm{~d}}{\mathrm{~d} x} T_{n}(x)+n^{2} T_{n}(x)=0 \tag{17}
\end{equation*}
$$

then we get the following relation:

$$
\begin{equation*}
\left(1-x_{i}^{2}\right) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} T_{N}\left(x_{i}\right)=-N^{2} T_{N}\left(x_{i}\right) \tag{18}
\end{equation*}
$$

Substituting this into eqn.(16) we obtain

$$
\begin{equation*}
\left(D_{N}\right)_{i j}=\frac{d_{i}}{d_{j}} \frac{1}{x_{i}-x_{j}}=\frac{c_{i}}{c_{j}} \frac{T_{N}\left(x_{i}\right)}{T_{N}\left(x_{j}\right)} \frac{1}{x_{i}-x_{j}} \tag{19}
\end{equation*}
$$

Considering $T_{N}\left(x_{i}\right)=\cos [N(i \pi) / N]=\cos i \pi=(-1)^{i}$ and (11), we get

$$
\left(D_{N}\right)_{i j}=\frac{c_{i}}{c_{j}} \frac{(-1)^{i+j}}{x_{i}-x_{j}}, \quad c_{i}= \begin{cases}2 & \text { for } i=0 \text { or } N \tag{20}\\ 1 & \text { otherwise }\end{cases}
$$

(II) Diagonal elements $(i=j) 0<i, j<N$

When $x \rightarrow x_{j}$, the first derivative (15)

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} x} \phi_{j}(x)\right|_{x \rightarrow x_{j}}=\left.\frac{1}{\left(x-x_{j}\right)^{2}}\left\{[Y(x)]\left(x-x_{j}\right)-\left(1-x^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} x} T_{N}(x)\right\}\right|_{x \rightarrow x_{j}}
$$

becomes $0 / 0$ because $\left(1-x_{j}^{2}\right) \mathrm{d} T_{N}\left(x_{j}\right) / \mathrm{d} x=0$. Where, we defined $Y(x)=$ $-2 x \mathrm{~d} T_{N}\left(x_{j}\right) / \mathrm{d} x+\left(1-x^{2}\right) \mathrm{d}^{2} T_{N}\left(x_{j}\right) / \mathrm{d} x^{2}$, while $x \rightarrow x_{j}, Y\left(x_{j}\right) \neq 0$. We can apply the L'Hopital theorem to the above derivative and get

$$
\begin{gather*}
\left.\frac{\mathrm{d}}{\mathrm{~d} x} \phi_{j}(x)\right|_{x \rightarrow x_{j}}=\frac{1}{2\left(x-x_{j}\right)}\left\{-2 x T_{N}^{\prime}+\left(1-x^{2}\right) T_{N}^{\prime \prime}\right. \\
\left.+\left(x-x_{j}\right)\left[-2 T_{N}^{\prime}-2 x T_{N}^{\prime \prime}-2 x T_{N}^{\prime \prime}+\left(1-x^{2}\right) T_{N}^{\prime \prime \prime}\right]+2 x T_{N}^{\prime}-\left(1-x^{2}\right) T_{N}^{\prime \prime}\right\} \\
=\frac{1}{2\left(x-x_{j}\right)}\left\{\left(x-x_{j}\right)\left[-2 T_{N}^{\prime}-4 x T_{N}^{\prime \prime}+\left(1-x^{2}\right) T_{N}^{\prime \prime \prime}\right]\right\} \\
=\frac{1}{2}\left\{-2 T_{N}^{\prime}-4 x T_{N}^{\prime \prime}+\left(1-x^{2}\right) T_{N}^{\prime \prime \prime}\right\} \tag{21}
\end{gather*}
$$

so that the diagonal elements of the Chebyshev differentiation matrix are

$$
\begin{equation*}
\left(D_{N}\right)_{j j}=-\frac{1}{2 d_{j}}\left\{2 T_{N}^{\prime}\left(x_{j}\right)+4 x_{j} T_{N}^{\prime \prime}\left(x_{j}\right)-\left(1-x_{j}^{2}\right) T_{N}^{\prime \prime \prime}\left(x_{j}\right)\right\} \tag{22}
\end{equation*}
$$

Because of $j \neq 0, N, \sin \theta_{j} \neq 0$, then $T_{N}^{\prime}\left(x_{j}\right)=0$. And from eqn. (17)

$$
-\left(1-x^{2}\right) T_{N}^{\prime \prime \prime}(x)=-3 x T_{N}^{\prime \prime}(x)+\left(N^{2}-1\right) T_{N}^{\prime}(x)
$$

Considering $T_{N}^{\prime}\left(x_{j}\right)=0$, we substitute this relation into eqn. (22) we obtain

$$
\left(D_{N}\right)_{j j}=-\frac{1}{2 d_{j}} x_{j} T_{N}^{\prime \prime}\left(x_{j}\right)
$$

Moreover for $T_{N}^{\prime \prime}\left(x_{j}\right)$ and making use of (18), the diagonal elements are derived as follows:

$$
\begin{equation*}
\left(D_{N}\right)_{j j}=-\frac{-x_{j} N^{2} T_{N}\left(x_{j}\right)}{2 d_{j}\left(1-x_{j}^{2}\right)}=\frac{-x_{j}}{2\left(1-x_{j}^{2}\right)} \tag{23}
\end{equation*}
$$

(III) $i=0, j=0$ or $i=N, j=N$

Because $x_{j}=1$ for $j=0$ and $x_{j}=-1$ for $j=N$, then the last term of the right hand side of (22) vanishes. And we know

$$
T_{N}(1)=1, \quad T_{N}(-1)=(-1)^{N}, \quad T_{N}^{\prime}(1)=N^{2}, \quad T_{N}^{\prime}(-1)=-(-1)^{N} N^{2}
$$

and also

$$
T_{N}^{\prime \prime}(1)=\frac{\left(N^{2}-1\right) N^{2}}{3}, \quad T_{N}^{\prime \prime}(-1)=-(-1)^{N} \frac{\left(N^{2}-1\right) N^{2}}{3}
$$

Therfore the numerator and denominator of eqn.(22) are

$$
\begin{gathered}
i=0, j=0: \quad 2 T_{N}^{\prime}(1)+4 T_{N}^{\prime \prime}(1)=\frac{2 N^{2}\left(2 N^{2}+1\right)}{3}, \quad 2 d_{0}=-4 N^{2} T_{N}(1) \\
i=N, j=N: \quad 2 T_{N}^{\prime}(-1)+4 T_{N}^{\prime \prime}(-1)=-(-1)^{N} \frac{2 N^{2}\left(2 N^{2}+1\right)}{3} \\
2 d_{0}=-4 N^{2} T_{N}(-1)
\end{gathered}
$$

so that finally we get

$$
\begin{equation*}
\left(D_{N}\right)_{00}=\frac{2 N^{2}+1}{6}, \quad\left(D_{N}\right)_{N N}=-\frac{2 N^{2}+1}{6} \tag{24}
\end{equation*}
$$

Derivation of $T_{N}^{\prime \prime}(\pm 1)$:
Ordinary differentiation equation for Chebyshev polynomial in (V) we used

$$
-\left(1-x^{2}\right) T_{N}^{\prime \prime \prime}(x)=-3 x T_{N}^{\prime \prime}(x)+\left(N^{2}-1\right) T_{N}^{\prime}(x)
$$

By using for $x=1$ in above equation, we obtain

$$
T_{N}^{\prime \prime}(1)=\frac{\left(N^{2}-1\right)}{3} T_{N}^{\prime}(1)=\frac{\left(N^{2}-1\right) N^{2}}{3}
$$

For $T_{N}^{\prime \prime}(-1)$, we derive similarly.

References

[1] Trefethen, L. N.: 2000 Spectral Methods in Matlab, SIAM.
[2] C. Canuto, A. Quarteroni, M. Y. Hussaini and T. A. Zang: Spectral Methods Fundamentals in Single Domains, Springer-Verlag Berlin Heidelberg 2006
[3] Haydar Alici: Pseudospectral Methods for Differential Equations: Application to the Schrodinger Type Eigenvalue Problems, December 2003, The Middle East Technical University

