
Derivation of Chebyshev Differentiation Matrix

Shigenobu Itoh

February 1, 2019

1 Lagrange interpolation polynomial

Consider the set of u(xj) for the discrete points {xj}, j = 0, ...., N．The
interpolationpolynomial for u(xj)in the Lagrange form is

p(x) =

N∑
j=0

ϕj(x)u(xj) (1)

where ϕj(x) is called Lagrange interpolation coefficient and is defined by

ϕj(x) =
N∏

m=0
j ̸=m

(
x− xm
xj − xm

)
. (2)

Lagrange interpolation (1) is also defined as follows

ϕj(x) =
SN (x)

S′
N (xj)(x− xj)

, (3)

where SN (x) is defined by

SN (x) =
N∏
j=0

(x− xj). (4)

2 Chebyshev interpolation

Chebyshev polynomial is defined by

Tn(x) = cos(nθ), x = cos θ. (5)

For the SN (x) in the interpolation polynomial (3), we choose the following
form

SN (x) = (1− x2)
dTN (x)

dx
. (6)
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By using the Chebyshev polynomial (5), we can expand SN (x) as follows:

SN (x) = (1− x2)
dTN (x)

dx
= sin2 θ

−N sinnθ

− sin θ
= N sin θ sinNθ, (7)

so that SN (x) becomes zero for

Nθ = πj, j : integer.

Therefore we define

θj =
πj

N
, j = 0, 1, · · · , N, (8)

then we get

SN (xj) = 0, xj = cos
πj

N
.

Here xj are the Gauss-Chebyshev-Lobatto points．Thus，using (6) and
Chebyshev polynomial (5), interpolation coefficient (3) is defined by

ϕj(x) =
(1− x2)dTN (x)

dx

dj(x− xj)
, j = 0, 1, · · · , N, (9)

where dj are

dj = S′
N (xj) = −cjN2TN (xj),

′ ≡ d

dx
(10)

and
cj = 2, for j = 0, N, cj = 1 for 0 < j < N. (11)

（Proof）Derivative of SN (x) with x is

S′
N (x) = −N cos θ

sin θ
sinNθ −N2 cosNθ

Here for j = 1, · · · , N − 1, sin θj ̸= 0 and sinNθj = 0, so that we obtain
S′
N (xj) = −N2TN (xj). While sin θj = 0 and sinN × θj = 0 for j = 0, N .

Therefore S′
N includes 0/0，so that we apply the L’Hopital theorem for the

first term of the right hand side

S′
N (xj) = S′

N (θ = 0 or π) = −N cos θ

sin θ
sinNθ −N2 cosNθ

L′Hopital
= −N− sin θ sinNθ +N cos θ cosNθ

cos θ
−N2 cosNθ = −2N2TN (xj)
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3 Derivation of Chebyshev differentiation matrix

Consider Gauss-Chebyshev-Lobatto points (or Chebyshev points, for short)
in the x ∈ [−1, 1] defined by

xj = cos θj =
πj

N
, j = 0, 1, · · · , N. (12)

Given a grid function u defined on the Chebyshev points, we obtain a discrete
derivative w in two steps:
　
• Let p be the unique polynomial of degree ≤ N with p(xj) = uj , 0 ≤ j ≤ N .
• Set wj = p′(xj).

This operation is linear, so it can be represented by multiplication by an
(N + 1)× (N + 1) matrix, which we shall denote by DN :

wi = (DN )ijψj (13)

Here N is an arbitrary positive integer, even or odd. And, (DN )ij represents
the (i, j) elements of the matrix DN .

In order to derive the matrix DN , consider the interpolation polynomial
(1) and the interpolation coefficients (9). From the derivative dp(x)/dx =
u(xj)dϕj(x)/dx we get

(DN )ij =
1

dj

[
d

dx
ϕj(x)

]
x=xi

. (14)

Considering eqn. (9) we obtain

d

dx
ϕj(x) =

1

(x− xj)2

{[
−2x

d

dx
TN (x) + (1− x2)

d2

dx2
TN (x)

]
(x− xj)

−(1− x2)
d

dx
TN (x)

}
, j = 0, 1, · · · , N. (15)

　
(I) Non-diagonal elements：1 < i < N, 1 < j < N, i ̸= j
if we put x = xi in eqn.(15), we obtain

(DN )ij =
1

dj

1

xi − xj
(1− x2i )

d2

dx2
TN (xi), (16)

where we used the relation −2xidTN (xi)/dx = 0 in the bracket [ ]. That is
θi = iπ/N, sin θi ̸= 0

−2x
d

dx
TN (x)

∣∣∣∣
x=xi

= −2 cos θi
−N sin iπ

− sin θi
= 0
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Similarly this relation was applied for the second term of the ordinary dif-
ferential equation of Chebyshev polynomial

(1− x2)
d2

dx2
Tn(x)− x

d

dx
Tn(x) + n2Tn(x) = 0, (17)

then we get the following relation:

(1− x2i )
d2

dx2
TN (xi) = −N2TN (xi). (18)

Substituting this into eqn.(16) we obtain

(DN )ij =
di
dj

1

xi − xj
=
ci
cj

TN (xi)

TN (xj)

1

xi − xj
. (19)

Considering TN (xi) = cos[N(iπ)/N ] = cos iπ = (−1)i and (11), we get

(DN )ij =
ci
cj

(−1)i+j

xi − xj
, ci =

{
2 for i = 0 or N
1 otherwise

(20)

　
(II) Diagonal elements（i = j）0 < i, j < N
When x→ xj , the first derivative (15)

d

dx
ϕj(x)

∣∣∣∣
x→xj

=
1

(x− xj)2

{[
Y (x)

]
(x− xj)− (1− x2)

d

dx
TN (x)

}∣∣∣∣
x→xj

becomes 0/0 because (1 − x2j )dTN (xj)/dx = 0. Where, we defined Y (x) =

−2xdTN (xj)/dx+(1−x2)d2TN (xj)/dx
2, while x→ xj , Y (xj) ̸= 0. We can

apply the L’Hopital theorem to the above derivative and get

d

dx
ϕj(x)

∣∣∣∣
x→xj

=
1

2(x− xj)

{
− 2xT ′

N + (1− x2)T ′′
N

+(x− xj)
[
−2T ′

N − 2xT ′′
N − 2xT ′′

N + (1− x2)T ′′′
N

]
+ 2xT ′

N − (1− x2)T ′′
N

}
=

1

2(x− xj)

{
(x− xj)

[
− 2T ′

N − 4xT ′′
N + (1− x2)T ′′′

N

]}
=

1

2

{
−2T ′

N − 4xT ′′
N + (1− x2)T ′′′

N

}
, (21)

so that the diagonal elements of the Chebyshev differentiation matrix are

(DN )jj = − 1

2dj

{
2T ′

N (xj) + 4xjT
′′
N (xj)− (1− x2j )T

′′′
N (xj)

}
. (22)
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Because of j ̸= 0, N , sin θj ̸= 0, then T ′

N (xj) = 0. And from eqn. (17)

−(1− x2)T ′′′
N (x) = −3xT ′′

N (x) + (N2 − 1)T ′
N (x).

Considering T ′
N (xj) = 0, we substitute this relation into eqn. (22) we obtain

(DN )jj = − 1

2dj
xjT

′′
N (xj).

Moreover for T ′′
N (xj) and making use of (18), the diagonal elements are

derived as follows:

(DN )jj = −−xjN2TN (xj)

2dj(1− x2j )
=

−xj
2(1− x2j )

. (23)

　
(III) i = 0, j = 0 or i = N, j = N
Because xj = 1 for j = 0 and xj = −1 for j = N , then the last term of the
right hand side of (22) vanishes. And we know

TN (1) = 1, TN (−1) = (−1)N , T ′
N (1) = N2, T ′

N (−1) = −(−1)NN2

and also

T ′′
N (1) =

(N2 − 1)N2

3
, T ′′

N (−1) = −(−1)N
(N2 − 1)N2

3
.

Therfore the numerator and denominator of eqn.(22) are

i = 0, j = 0 : 2T ′
N (1) + 4T ′′

N (1) =
2N2(2N2 + 1)

3
, 2d0 = −4N2TN (1)

i = N, j = N : 2T ′
N (−1) + 4T ′′

N (−1) = −(−1)N
2N2(2N2 + 1)

3
,

2d0 = −4N2TN (−1),

so that finally we get

(DN )00 =
2N2 + 1

6
, (DN )NN = −2N2 + 1

6
. (24)

　
　
Derivation of T ′′

N (±1)：
Ordinary differentiation equation for Chebyshev polynomial in (V) we used

−(1− x2)T ′′′
N (x) = −3xT ′′

N (x) + (N2 − 1)T ′
N (x).

By using for x = 1 in above equation, we obtain

T ′′
N (1) =

(N2 − 1)

3
T ′
N (1) =

(N2 − 1)N2

3
.

For T ′′
N (−1), we derive similarly.
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