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1 Lagrange interpolation polynomial

Consider the set of u(x;) for the discrete points {z;}, j =0,....,N. The
interpolationpolynomial for w(z;)in the Lagrange form is

N
p(x) = ¢j(w)ulz;) (1)

J=0

where ¢;(z) is called Lagrange interpolation coefficient and is defined by

6i(x) = ﬂo (2=). @)

Lagrange interpolation (1) is also defined as follows

SN(Q})
S (@) (x — ;)

oj(z) =

where Sy () is defined by

N
Sn(@) = [[(z — ). (4)
j=0

2 Chebyshev interpolation
Chebyshev polynomial is defined by
T.(z) = cos(nf), x = cosé. (5)

For the Sy(z) in the interpolation polynomial (3), we choose the following

form
dTn(z)

o (6)

Sw(x) = (1 —2?)
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By using the Chebyshev polynomial (5), we can expand Sy (z) as follows:

T _ Nsi
Sw(z) = (1 — 22)3IN@) _ 2y =N sinnd

o g Nsinfsin N0,  (7)

so that Sy (x) becomes zero for
NO =mj, j:integer.

Therefore we define

then we get .
Sn(z;) =0, ;= cos %

Here z; are the Gauss-Chebyshev-Lobatto points. Thus, using (6) and
Chebyshev polynomial (5), interpolation coefficient (3) is defined by

(1- x2)dTN(ﬂf)

do ) j:O717"'7N7 (9)

¢j(x) = Tdr—1)

where d; are

dj = S}V(xj) = —CjN2TN(l'j), (10)

=4
T dx
and

¢j=2, for 7=0,N, ¢j=1 for 0<j<N. (11)

(Proof) Derivative of Sy (z) with z is

cosf

Sy(z) =—N sin N§ — N2 cos N6

sin 6

Here for j = 1,--- ,N — 1, sinf; # 0 and sin Nf; = 0, so that we obtain
S\ (zj) = =N?Tn(zj). While sinf; = 0 and sin N x 6; = 0 for j = 0, N.
Therefore S’ includes 0/0, so that we apply the L’'Hopital theorem for the
first term of the right hand side

Sy(z;) =Sy(@ =0 or 7) = —N:?jg sin N§ — N2 cos N6

L'Hopital —sinfsin N + N cosfcos NO

N
cos

N?cos N0 = —2N?Tn(z;)
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3 Derivation of Chebyshev differentiation matrix

Consider Gauss-Chebyshev-Lobatto points (or Chebyshev points, for short)
in the z € [—1, 1] defined by

mj .
_ 0; = -2, =0,1,---,N. 12

zj =costy = J (12)
Given a grid function u defined on the Chebyshev points, we obtain a discrete

derivative w in two steps:

e Let p be the unique polynomial of degree < N with p(x;) = u;,0 < j < N.
e Set w; = p'(z;).

This operation is linear, so it can be represented by multiplication by an
(N +1) x (N + 1) matrix, which we shall denote by Dy:

w; = (Dn)ij1; (13)

Here N is an arbitrary positive integer, even or odd. And, (Dy);; represents
the (i,7) elements of the matrix Dy.

In order to derive the matrix Dy, consider the interpolation polynomial
(1) and the interpolation coefficients (9). From the derivative dp(z)/dzx =
u(zj)de;j(z)/dx we get

(Dn)ij = dlj [;x@(ﬂv)]x:m : (14)
Considering eqn. (9) we obtain
2
%qu(x) _ (36_193])2 { [—Qm(icTN(:r) +(1- gﬂ)(foTN(x)} (z — ;)
—(1—x2)£UTN(x)}, j=0,1,--- N. (15)

(I) Non-diagonal elements : 1 <i < N, 1<j<N, i#j
if we put z = x; in eqn.(15), we obtain

1 1 d2

(DnN)ij (1- x?)@TN(l‘z‘), (16)

dj €T; —xj

where we used the relation —2z;dTn(z;)/dz = 0 in the bracket [ ]. That is
0; =im /N, sinf; #0

q  Nsini
—2r—TnN(x) = —2cos Giﬂ =0

dx J— —sin6;
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Similarly this relation was applied for the second term of the ordinary dif-
ferential equation of Chebyshev polynomial

2 d
(1-— x2)@Tn(x) - xaTn(m) + 02T, (z) = 0, (17)
then we get the following relation:
d2
(1- x?)@TN(m’i) = —N?Ty(;). (18)

Substituting this into eqn.(16) we obtain

. dl 1 . C; TN(CL‘,L) 1
dj IL'Z‘*CE]' Cj TN($]‘) :Ei*$j‘

(DnN)ij (19)

Considering Ty (z;) = cos[N (im)/N] = cosim = (—1)% and (11), we get

g (=1t [ 2 for i=0 or N
(Dn)ij = cj xi—x; @ = { 1 otherwise (20)
(IT) Diagonal elements (i =j) 0<i,j <N
When « — x;, the first derivative (15)
d 1 d
5o0| = arplele-m-o-agne)|

becomes 0/0 because (1 — :rjz)dTN(xj)/dx = 0. Where, we defined Y (x) =
—2xdTn(z;)/dz + (1 — 2?)d* Ty (z;)/dx?, while x — z;, Y (z;) # 0. We can
apply the L’Hopital theorem to the above derivative and get

1
= 7{ — 22T + (1 — )T}

d

T—Tj

+(z — xj) [-2TN — 22Tx — 22Ty + (1 — 2*) TN ] + 22Ty — (1 — 2*)Ty }

1
= S—oy {(x —z)) [ — 2Ty — 42Tl + (1 —xQ)T;(/H
J
1
=2 {—2T;\, — AT+ (1 — 22T } , (21)

so that the diagonal elements of the Chebyshev differentiation matrix are

1

(ON)ii = =54 {20 () + 40, T () = (L= 2 TR (@) b (22)
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Because of j # 0, N, sin6; # 0, then T} (z;) = 0. And from eqn. (17)
(1 - ) TY() = —3Th(x) + (N2 — )T (2).

Considering T (z;) = 0, we substitute this relation into eqn. (22) we obtain

1
;TN ().

(Dn)jj = — 24,

Moreover for T (z;) and making use of (18), the diagonal elements are

derived as follows:

—xjNQTN(xj) _ —Ty
2d;(1 —m?) 2(1 —x?)

(Dn)jj = — (23)

(Ill) i=0,j=00ri=N,j=N

Because x; = 1 for j = 0 and x; = —1 for j = N, then the last term of the
right hand side of (22) vanishes. And we know

Tn(1) =1, In(-1) = (=D, Ty(1)=N? Tn(-1)=—(-1)"N?

and also

N? — 1)N?
rym) = N = oy
Therfore the numerator and denominator of eqn.(22) are
_ 2N?%(2N%+41)
= 3 ,
N2N2(2N?% +1)

3 Y

i=0,j=0: 2T%(1)+4T%(1) 2dy = —4N*Tn(1)

i=N,j=N: 2TN(=1)+4Ty5(-1) = —(-1)

2dy = —4AN*Tn(—1),
so that finally we get

(Dn)oo =

Derivation of T} (£1) :
Ordinary differentiation equation for Chebyshev polynomial in (V) we used

—(1 - 2*)Ty () = =32TR(x) + (N? = 1) Ty (2).
By using for x = 1 in above equation, we obtain
(N2 —-1) (N2 —1)N?
3 3 ’

For T} (—1), we derive similarly.

Ty(1) = Tn(1) =



demograPhysics https://micronanopi.net/ 6

References

[1] Trefethen, L. N.: 2000 Spectral Methods in Matlab, STAM.

[2] C. Canuto, A. Quarteroni, M. Y. Hussaini and T. A. Zang: Spectral
Methods Fundamentals in Single Domains, Springer-Verlag Berlin Hei-
delberg 2006

[3] Haydar Alici: Pseudospectral Methods for Differential Equations: Ap-
plication to the Schrodinger Type Eigenvalue Problems, December
2003, The Middle East Technical University



