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1 Interpolation polynomial

Consider the set of u(x;) for the discrete points {z;}, j=0,1,....,N. The
interpolation polynomial for u(x;)in the Lagrange form is

N
p(x) = ¢j(w)ulz;) (1)
§=0
where ¢;(z) is called Lagrange interpolation coefficient and is defined by
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Lagrange interpolation (2) is also defined as follows

Sn(z)
Sy (@) (z — x;)

¢j(x) = ; (3)

where Sy (z) is defined by

2 Laguerre polynomial Ly(z) and Ly(z;) =0

Consider following Laguerre polynomial :

n
1.7'

Ln(z) = Z<_1)rncn—rﬁ- (4)

r=0

The ordinary differential equation (ODE, for short) for the Laguerre poly-
nomial y
zy" + (1 —x2)y +ny =0. (5)



The recurrence relation for Laguerre polynomial (4) is given by as follows
nlp—1(z) — 2n+1—x)Ly(x)+ (n+1)Lpt1(x) =0 (6)

In the following sections, the roots of Ly (x) = 0 are needed. Therefore, a
method for obtaining this value will be described. By the recurrence relation

(6), the following matrix is derived
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Here, if we require Ly41(x) = 0 then the system reduces to a standard
eigenvalue problem Wr = zr with eigenvalue parameter z, which provides
the roots z;, j=0,1,---,N of Lyyi(z) as required.

Example The roots of Lsg(z) =0
minimum root x; = 0.02863051833938032,
maximum root zsg = 180.698343709214555

3 Laguerre differentiation matrix for the first deriva-
tive

If we choose the Laguerre polynomial (4) for the interpolation coefficient

Sn(z) = Ly(x), Sy(x) does not become zero at x = 0, because Ly (0) # 0.
Therefore we choose
Sn(z) = xLy(z). (8)
Therefore
Sy(x) = Ln(x) + aLy (). (9)

and the interpolation coefficient ¢;(x) by Laguerre polynomial is defined by

xLy(x)
Si(@)(z — ;)

The first derivative of p(z) defined by (1) is written by

¢j(x) = (10)

N
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In order to derive the elements of the differentiation matrix Dy, we
differentiate the ¢;(z) and get

i¢(x) _ Ln(z) +zLliy(z) xLyn(z)
dz ™ Sy(@i)(@—z;)  Sy(z;)(z -

FRES (11)

(i) Non-diagonal elements :i # j, 0<i,j <N
From eqn.(11)
_ x;i Ly (x;)
S (zj) (@i — ;)

(DN)ij = %ﬁf’j(%)

where
Sn(xj) = Ly (x;),

so that we obtain ,
1 a:iLN(xi)

(xi —x5) Ly (z5)

(Dn)ij = (12)

(ii) Case i =0, 0<j< N:

We put z; = 29 = 0 for eqn.(11) and take into consideration Ly (0) = 1, the
elements are derived as follows

Lx(0) 1

= S ay) Py (13)

(Dn)oj

(iii) Case j =0, 0<i< N :
By eqns.(9) and (10), the interpolation coefficient for special case becomes

_ Ln(@) _
oo(w) = ) = (o)
Then we get
(Dn)io = Liy(w:). (14)

(iv) Diagonal elements i = j :
From eqn. (11), the derivative of ¢;(x) for the case becomes
iqj,(x) _ [Ln(@) + 2Ly (2)](z — x5) — zLy ()
dz™’ Sy (@) (@ — z;)?
For above equation we put  — z;, then the numerator and the denominator
become zero. Therefore, we can apply the L’Hopital theorem to it:

L'Hopital [L'y(x) + Ly (x) + 2L (2)|(z — zj) + (Ln(z) + 2L\ (x)) — Ly (z) — x Ly (x)

28y (zj)(x — x5)



_ aLliy(z) + 2L (z) _ aLiy(z) + 2L (2)
287 (x5) 2x; L\ (z4)

Here the following relation

v L (z) = (x — 1)Ly (z) — NLn(x)

is derived from ODE (5), then we substitute this into the most right hand
side of the diagonal elements, and get

d x+ 1)L (2) — NLy(z
i Ly ()

Therefore we put x — x;, the diagonal elements of the matrix are

i+ 1
Dy)jj = —2—
( N)]J 256]

(v) Casex =0 (i=5=0):
For eqn. (10), we put = z; = 0, and in eqn. (9) considering S\ (0) =
Ly (0) =1 then we obtain

¢0($) S;V(O)x = LN(.%').
Thus q
(D)oo = o Lx(@)|  =In(0)=-N. (16)

This corresponds to eqn.(14) for the case (III). So, we put x; — z¢ = 0,
then we get the result (16).

Numerical results 1 : We try the above differentiation matrix for the
function U(z) = exp(—z)sin(x), N = 50, and the results are shown in
Table 1. It should be noted that when x becomes large the error also large.
Then in order to avoid those inaccurate elements we set the size of the matrix
M =14: (Dy) = (14 x 14) .

4 Laguerre differentiation matrix for the second
derivative

Differentiate eqn. (11) further, we obtain

d72 o) = 2Ly () +aLiy(x)  Ln(2) +aLiy(v) xLy(x)
@29 = TS G E ) By @)@ | S — 5,

(17)




Table 1: U(x) = exp(—x)sin(xz), N =50,M =14

Lj

Results by Dy

Exact values

0
0.028630518
0.150882936
0.370948782
0.689090700
1.105625024
1.620961751
2.235610376
2.950183367
3.765399774
4.682089388
5.701197575
6.823790910
8.051063669

1.000000005

0.943558556

0.720918497

0.392989097

0.068270825
-0.147352646
-0.207373689
-0.150119367
-0.061329775
-0.005269365
0.008974974

0.004628096

0.000374024
-0.000377014

1
0.943558559
0.720918492
0.392989103
0.068270815
-0.147352632
-0.207373709
-0.150119335
-0.061329828
-0.005269243
0.008974876
0.004628807
0.000372763
-0.000375009

(i) Non-diagonal elements : i # j, 0<i,j <N
Considering Ly (x;) = 0 in eqn.(17) we get

d? 2L (z5) + o L (x3) 2x; L\ ()
Low| - Ll rnlble) el

dx — Sh () (z; — x;) Sy (@) (zi — x5)

By using ODE (5), we find the relation x; L\ (z;) = (z; — 1)L’y (x;), then

1L . 20 L’ .
(above equation) = (sz + DIy(@s) ; 2ily (@) 5
Sy () (@i —aj)  Sy(ag) (@i — )
where S (z;) = xjLy(x;). Therefore, we obtain the following expression of
non-diagonal elements

x; + 1)(331 — l‘j) - 2$Z]L/N(xz)
zj(zi — x5)? Ly ()

(D), = L as)

(ii) The first row :i =0, 0<j <N

When deriving the result (18), the relational expressionz; L% (z;) = (z; —
1)Ly (z;) was used. However, putting z; = 0 for the relational expression,
then incorrect result yields:0 = —L’y(0) = N. Therefore we must return to
eqn. (17). And putting x = x; = 0 in this equation, we find

_2L5(0)
Sy (x))z;

_ 2Ly(0)
Siy(zj)x?

d2
@@'(0) =



that is oN 5
(DP)o; = - . (19)
NI a2 () 2Ly (xg)

(iii) Diagonal elements:i = j, 0<1i,j < N
We can rewrite eqn.(17) as follows

(2L (z) + 2L (2))(x — x5)? — 2(Ly(x) + 2L\ (2))(z — ;) + 22Ly(2)
Sy(@))a— ;)
When x — z;, the numerator and denominator become zero. So, applying

the L’Hopital theorem, differentiate the numerator and denominator. First
the denominator becomes

() =

35y (z))(z — x7)%,
the second the numerator becomes
(BLY + 2L (x — x)? + 2(2Ly + 2 LX) (x — ;) — 2(2Ly + L) (x — ;)
—2(2Ly+x L) (r—x;)—2(Ly+xLy)+2Lx+22 Ly = (3L} +x L) (z—x;)%
From these results we obtain

o 3L (x) + aLiy(x)

By ODE(5)
xy”’ + (2 _ x)y" + (n — 1)y' =0= 2L} = (:L‘ — 2)L§/V + (1 - N)LSV

We substitute the obtained relation into the numerator of the right hand
side of (20), then obtain

3L +H{(z—2) Ly +(1-N)L)y} = (z+1) L +(1-N)L)y = 2L+ L+ (1-N) Ly

(z—1)L)y — NLy
xr

_ (m_N+ T 1) Lhy(a) — <1+i> NLy(z).

x
Thus we put  — z; in eqn. (20), and get

=(x—1)Ly — NLy + +(1—N)Ly

2 i —1 1
(DJ(V))J] = <SU]' - N+ jZL‘j ) @ (21)

(iv) The first column: j =0, 0<i <N



Table 2: U(x) = exp(—x)sin(x), N =50,M =14

zj DY Dy x Dy Exact
0 22.000000451 -2.000000493 2

0.028630518
0.150882936
0.370948782
0.689090700
1.105625024
1.620961751
2.235610376
2.950183367
3.765399774
4.682089388
5.701197575
6.823790910
8.051063669

-1.942754490
-1.700356508
-1.286285499
-0.774961725
-0.296960809
0.019827976
0.131929026
0.102748887
0.037593220
0.000561324
-0.00558386
-0.001862931
0.000117415

-1.942754464
-1.700356550
-1.286285439
-0.774961810
-0.296960685
0.019827788
0.131929324
0.102748384
0.037594131
0.000559532
-0.005579935
-0.001872984
0.000152662

-1.942754386
-1.700356544
-1.286285474
-0.774961749
-0.296960780
0.019827939
0.131929077
0.102748820
0.037593439
0.000561041
-0.005583559
-0.001864993
0.000124833

As already used several times, putting z; = 0 in eqn. (10), yields ¢o(z) =
Ly (x). Therefore

d2

@qﬁo(x) = Liy(x).

Then L (x) is represented by L’y (z) from ODE (5), thus

€Ty —

L (). (22)

T

(v) Casei=75=0:
This is the case that z = 0 in the above expression d?¢o(z)/dz? = L (z).
We put = 0 in the obtained equation zy” + (2 — x)y” + (n — 1)y’ = 0,

2L (0) = (1= NI (0) = 24(0) = 5 1y(0) = M=,
Thus v
(D)0 = Y= o3

Numerical results 2: Similar as Numerical results 1, comparison of the
results by D](\?), Dy x Dy and exact values are shown in Table 2.



